



### **Cable Diagnostic Focused Initiative**

National Electric Energy Testing Research Application Center (NEETRAC)

PI: Rick Hartlein

November 2010







- Underground cable system infrastructure is complex and aging.
- Failures are increasing
- If not addressed then old infrastructure will not support future operation of the grid.
- Not enough money / manufacturing capacity to simply replace because they are old.
- Need diagnostic tools to prioritize Active Asset Management.
- Some tools are available, but there is significant mistrust and commercialism that has limited their effective deployment.







#### CDFI Team

### **NEETRAC**

Jorge Altamirano

Tim Andrews

Yamille del Valle\*

**Bryan Davant** 

Stacy Elledge

**Barry Fairley** 

Nigel Hampton (Co-PI)

Rick Hartlein (PI)

**Thomas Parker** 

Joshua Perkel\*

Dean Williams

### **Georgia Tech - ECE**

Miroslav Begovic Ron Harley J.C. Hernandez\* Salman Mohagheghi

### **IREQ**

Jean-Francois Drapeau

\*PhD supported by CDFI





# CDFI Partners







### **Participants**

| American Electric Power             |  |  |  |
|-------------------------------------|--|--|--|
| Ameren                              |  |  |  |
| Cablewise / Utilx                   |  |  |  |
| CenterPoint Energy                  |  |  |  |
| Consolidated Edison                 |  |  |  |
| Cooper Power Systems                |  |  |  |
| Duke Power Company                  |  |  |  |
| Exelon (Commonwealth Edison & PECO) |  |  |  |
| First Energy                        |  |  |  |
| Florida Power & Light               |  |  |  |
| Georgia Tech                        |  |  |  |
| GRESCO                              |  |  |  |
| HDW Electronics                     |  |  |  |
| High Voltage, Inc.                  |  |  |  |
| HV Diagnostics                      |  |  |  |

| HV Technologies                       |
|---------------------------------------|
| Hydro Quebec                          |
| IMCORP                                |
| NRECA                                 |
| Oncor (TXU)                           |
| PacifiCorp (added mid 2005)           |
| Pacific Gas & Electric (added Jan 06) |
| PEPCO                                 |
| Prysmian                              |
| Public Service Electric & Gas         |
| Southern California Edison            |
| Southern Company                      |
| Southwire                             |
| Tyco/Raychem                          |





### **CDFI** Activities







#### **CDFI** Activities

**Field Studies Georgia Power Alabama Power Duke** Paper & XLPE **XLPE XLPE & Paper** Jkt & UnJkt Jkt & UnJkt Jkt & UnJkt **7 Conductor Miles 24 Conductor Miles** 29 Conductor Miles Offline PD (0.1Hz) Offline PD (0.1Hz) Offline PD (0.1Hz) Offline PD (60Hz) Tan δ Tan δ Tan δ **Monitored Withstand Monitored Withstand Monitored Withstand** Charlotte \* 2 **Evans** Cincinnati Birmingham Macon Montgomery Clemson Roswell \* 3 Morresville





### **Diagnostic Data Obtained from Many Sources**







### **Significant Data Gathered**

| Data Type              | Technique           | Laboratory [Conductor miles] | Field [Conductor miles] |
|------------------------|---------------------|------------------------------|-------------------------|
| Diagnostic             | DC Withstand        | -                            | 78,105                  |
|                        | Monitored Withstand | 1.8                          | 260                     |
|                        | PD Offline          | 4.8                          | 490                     |
|                        | PD Online           | 5                            | 262                     |
|                        | Tan δ               | 4.3                          | 640                     |
|                        | VLF Withstand       | 4.6                          | 9,900                   |
|                        | IRC                 | 0.3                          | -                       |
| Service<br>Performance | ALL                 | 89,000                       |                         |





# Diagnostic Testing Program (Approach is Important! - SAGE)







### **Cable System Phases - Actual Case**







# Interpreting Diagnostic Data – What we believed to be true was wrong! (Partial Discharge Example)







# Interpreting Diagnostic Data (Tan δ)







# Defining Accuracy: Ability to Predict Failures





### **Accuracy – Failures over Time**







#### **All Accuracies**







# Accuracy – Probabilistic Approach (Partial Discharge Example)







### Accuracy – Probabilistic Approach Tan δ Example







### **VLF Withstand – Effectiveness & Application Time**





#### **Dissemination**



- 1. First practical utility implementations of Monitored Withstand Diagnostics in the USA; Chris L Fletcher, Nigel Hampton, Jean Carlos Hernandez, Jeff Hesse, Michael G Pearman, Joshua Perkel, C Tim Wall, Walter Zenger; submitted to International Conference on Insulated Power Cables JICABLE11, Versailles France, June 2011; Abstract # 9
- 2. Challenges associated with the interpretation of dielectric loss data from power cable system measurements; J. Perkel, J.C. Hernández, R. N. Hampton, J. F. Drapeau, J. Densley; submitted to International Conference on Insulated Power Cables JICABLE11, Versailles France, June 2011; Abstract # 6
- 3. Application Of Artificial Intelligence To The Problem Of Selecting The Appropriate Diagnostic For Cable Systems; Yamille Del Valle, Nigel Hampton; submitted to International Conference on Insulated Power Cables JICABLE11, Versailles France, June 2011; Abstract # 3
- 4. Cable Fleet Management; RN Hampton, M Olearczyk, J Perkel, N Weisenfeld; IEEE Spectrum; Nov 2010
- 5. Experience of Withstand Testing of Cable Systems in the USA; Hampton, R.N., Perkel, J., Hernandez, J.C., Begovic, M., Hans, J., Riley, R., Tyschenko, P., Doherty, F., Murray, G., Hong, L., Pearman, M.G., Fletcher, C.L., and Linte, G.C.; CIGRE 2010, Paper No. B1-303
- 6. Characterization of Ageing for MV Power Cables Using Low Frequency Tan-delta Diagnostic Measurements; JC. Hernandez-Mejia, RG. Harley, RN Hampton, RA Hartlein; IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 16, Issue 3, pp. 862-870, June 2009.
- 7. Determining Routes for the Analysis of Partial Discharge Signals Derived from the Field; Hernández-Mejía, J.C.; Perkel, J.; Harley, R.; Begovic, M.; Hampton, N.; and Hartlein, R.; IEEE Trans. on Dielectrics and Electrical Insulation, December 2008, pp. 1517-1525.
- 8. Correlation between Tan δ Diagnostic Measurements and Breakdown Performance at VLF for MV XLPE Cables; Hernández-Mejía, J.C.; Perkel, J.; Harley, R.; Hampton, N.; and Hartlein, R.; IEEE Trans. on Dielectrics and Electrical Insulation, February 2009, pp. 162-170
- Some Considerations on the Selection of Optimum Location, Timing, and Technique, for Diagnostic Tests, RA Hartlein, RN Hampton & J Perkel; IEEE Power Engineering Society (PES) General Meeting Panel Session Pittsburg 2008
- 10. Characterization of Aging in Medium Voltage Power Cables Using Low Frequency Tan-delta Diagnostics Features R.N. Hampton, R. Harley, R. Hartlein & J.C. Hernandez; IEEE Transactions in Power Delivery; submitted
- 11. Validation of the accuracy of practical diagnostic tests for power equipment; M. Begovic, RN. Hampton\*, R. Hartlein, J.C. Hernandez-Mejia, and J Perkel; CIGRE 2008 Paris Study Committee D1 Paper 205
- 12. On Distribution Asset Management: Development of Replacement Strategies; Miroslav Begovic, Joshua Perkel, Nigel Hampton, Rick Hartlein; IEEE PES PowerAfrica 2007 Conference and Exposition; Johannesburg, South Africa, 16-20 July 2007
- 13. Practical Issues Regarding The Use Of Dielectric Measurements To Diagnose The Service Health Of MV Cables; R.N. Hampton, R. Harley, R. Hartlein & J.C. Hernandez; International Conference on Insulated Power Cables; JICABLE07, Versailles France, June 2007
- 14. Validating Cable "Diagnostic Tests"; M Begovic, RN Hampton, R Hartlein, J Perkel; International Conference on Insulated Power Cables; JICABLE07, Versailles France, June 2007
- Periodic Update Meetings throughout the project
- Regional Meetings San Ramon, CA, Atlanta, GA, Columbus, OH, New York, New York, IEEE Education Session, St. Petersburg, FL2009/2010





### **CDFI - At the Beginning**

- For many utilities, the usefulness of diagnostic testing was unclear.
- The focus was on the technique, not the approach.
- The economic benefits were not well defined.
- There was almost no independently collated and analyzed data.
- There were no independent tools for evaluating diagnostic effectiveness.





### What We Now Know (1)

- Diagnostics can work they tell you many useful things, but not everything.
- 2. Diagnostics do not work in all situations.
- Diagnostics have great difficulty definitively determining the longevity of individual devices.
- 4. Utilities HAVE to act on ALL replacement & repair recommendations to get improved reliability.
- 5. The performance of a diagnostic program depends on:
  - Where you use the diagnostic
  - When you use the diagnostic
  - What diagnostic you use
  - What you do afterwards





### What We Now Know (2)

- 6. Quantitative analysis is complex BUT is needed to clearly see benefits.
- 7. Diagnostic data require skilled interpretation to establish how to act.
- 8. No one diagnostic is likely to provide the detailed data required for accurate diagnoses.
- 9. Large quantities of field data are needed to establish the accuracy/limitations of different diagnostic technologies.
- 10. Important to have correct expectations diagnostics are useful but not perfect!





#### Reflections

- Approach to data analysis established in CDFI
- Standards upgraded (IEEE 400 series)
- Many questions answered, gaps remain:
  - Defining the Benefits
  - Identifying anomalies that lead to failure
- Answers will come with continued analysis of field test data (Diagnostic tests with circuit performance monitoring).
- The potential value of continued analysis is high
- New approaches appear promising
  - Monitored withstand (HV withstand + tan δ or partial discharge)
  - Combined diagnostics (simultaneous tan δ and partial discharge)
  - New technologies (oscillating wave, cosine VLF withstand)





### **CDFI Phase 1 / CDFI Phase 2**

| Element       | CDFI Focus, Phase I         | CDFI Focus, Phase II*                                        |
|---------------|-----------------------------|--------------------------------------------------------------|
| Voltage Level | MV                          | MV & some HV                                                 |
| Test Type     | Condition Assessment        | Condition Assessment & Commissioning / Recommissioning       |
| Cable         | Service Aged                | Service Aged & Laboratory Testing of Service Aged            |
| Diagnostics   | Currently in use in US      | Currently in use in US & those that might reasonably be used |
| Data          | Utility Distribution System | Distribution, Industrial & Transmission                      |
| Lab Studies   | Field Aged Cable            | Cable & Accessories                                          |